
Thoughts	about	the	subway

Motivation
I	really	like	people	watching	when	I	am	on	public	transit.	I	know	the	word	to	describe	the	realization	that	the	people	around	you	have	as	vivid
lives	as	yours	is	called	sonder	(just	because	I've	looked	it	up	so	often)	but	its	interesting	to	try	to	work	out	what	you	think	a	person's	life	may
be	like	just	based	on	the	short	amount	of	time	that	you	will	have	been	in	the	same	vicinity	as	them.	This	is	a	very	roundabout	spiel	that
explains	a	little	bit	about	the	question	that	I	have	now.	In	my	watching	of	people	and	being	on	a	lot	of	public	transit	I've	observed	some	trends
in	the	way	that	subway	cars	are	populated.

At	first	I	was	deadset	on	the	idea	that	they	were	discretely	normally	distributed,	in	that	the	most	populated	subway	car	was	the	one	in	the
center	and	the	density	of	each	subway	car	would	decrease	the	further	away	it	was	from	the	middle	car.	Later,	however,	I	became	aware	of
some	nuance	in	this	distribution,	how	time	of	day	or	stop	at	which	the	subway	was	affected	the	variance	and	realized	shape	of	the
distribution.

In	general,	I	find	the	question	pretty	interesting	as	I	find	myself	often	moving	towards	the	extremes	of	the	subway	train	in	hopes	of	being	able
to	more	easily	find	a	seat	and	wanted	to	build	some	sort	of	generalized	game-theory	behaviour	model	that	would	give	some	insight	about	the
decision	making	process	of	an	individual	when	faced	with	the	choice	of	which	subway	car	to	try	to	enter.	Because	clearly	if	there	was	no	cost
or	necessary	"mental	capital"	associated	with	thinking	to	move	and	to	then	physically	move	to	subway	cars	that	are	likely	to	be	less	dense
then	all	subway	trains	would	be	uniformly	distributed.

In	a	more	academia	focussed	aspect,	however,	I	find	myself	to	be	quite	interested	in	urban	and	spatial	economics	and	the	question	of	trying
to	optimize	the	organization	is	what	tends	to	ocupy	my	mind	during	my	time	spend	on	public	transit.	There	could	be	an	argument	made	that	in
an	ideal	world	we	would	place	subway	stop	entrances	strategically	based	on	where	the	density	is	least	in	order	to	minimize	costs	for	an
individual	and	make	the	density	of	a	subway	train	evenly	distributed.

Initial	Notes
There	is	of	course	no	all	encompassing	model	but	I	do	want	to	try	to	get	pretty	close	to	including	factors	that	would	be	involved.	For	example,
although	an	informed	individual	may	have	a	decent	guess	as	to	how	crowded	a	particular	subway	train	will	be	in	general	depending	on	the
time	of	day	and	location	of	the	subway	stop,	there	is	always	a	degree	of	undertainty	that	we	should	bake	into	the	model.

Although	I've	found	a	couple	of	data	sources	that	look	somewhat	promising,	just	to	make	sure	that	this	project	doesn't	take	an	unreasonable
amount	of	time	I	won't	deal	with	any	of	the	estimating.

Building	the	Model
Although	people	are	into	all	sorts	of	weird	stuff,	we	will	stick	to	concepts	that	I	personally	think	most	individuals	value:

I	think	on	average,	most	people	would	rather	sit	down	on	the	subway	than	stand	up.
The	above	preferences	increases	the	longer	the	commute	an	individual	has.
People	dislike	having	to	be	in	a	dense	subway	car.

The	shape	of	the	utility	curves	is	something	that	can	get	very	complicated.	Based	on	my	setup	and	assumptions	above,	the	curve	should	be
inversely	proportional	to	the	density	of	a	subway	car	and	the	duration	of	a	subway	car.	But	I	think	the	first	bullet	point	speaks	to	a	jump	in	the
utility	in	terms	of	the	density	at	which	all	the	seats	on	a	subway	car	are	taken	up.	This	requires	a	bit	more	information	about	the	make	of
subway	cars	so	I'll	leave	that	to	later	if	I	happen	to	have	enough	time	to	think	about	it.

I	am	also	going	to	assume	that	the	density	of	a	subway	car	is	related	to	the	hour	in	which	the	ride	takes	place	(where	the	peak	times	are
around	work	start	and	end	times,	9am	and	5pm),	the	stop	in	which	your	subway	trip	begins	(where	the	density	is	lower	the	closer	to	the	the
ends	of	the	route	the	subway	stops	at).	Finally,	my	initial	assumption	was	that	population	density	is	approximatly	truncated	normally
distributed	(with	the	max	density	being	200	and	the	minimum	being	0)	with	regards	to	the	following	variables:

x ∈ [ − 5, 5] ∩ Z:	the	subway	car	that	you	choose	where	0	is	the	middle	subway	car.
t ∈ R + :	the	length	of	your	subway	trip.
h ∈ [0, 24):	the	hour	of	the	day	that	your	trip	takes	place.
s ∈ [0, 66] ∩ Z:	the	stop	at	which	your	subway	trip	begins.

Specifically,	let's	say	that	ρ	is	normally	distributed	with	mean	x0e
− x2 + h0e

− ( h−9 )2− ( h−17 )2 + s0e
− ( s−33 )2	and	standard	deviation	σ.	In	reality,	a

truncated	normal	distribution	would	be	more	apt	but	the	derivation	for	first	order	condition	was	so	messy	so	I'll	add	that	later	in	some	appendix
type	section	at	the	end	if	I	have	time.	To	provide	a	bit	more	commentary	about	why	I've	chosen	this	specific	distribution;	it	is	mostly	because
this	distribution	is	relatively	easy	to	handle	when	taking	derivatives	(as	opposed	to	something	like	absolute	values)	and	I	wanted	to	use
functions	that	were	symmetric,	yield	lower	values	for	higher	absolute	input	numbers,	and	yield	higher	values	for	lower	absolute	input
numbers.



And	with	all	this	in	mind,	let's	write	the	utility	function	as

u(ρ, t) = − c | x | − aln
t
b1

ρ
b2

+ 1 ,

where	an	individual's	maximization	problem	is

max
x

E[u(ρ, t) | x, h, s].

Optimizing	Individual	Utility

This	problem	is	nice	in	the	sense	that	we	aren't	worrying	about	any	equilibria	with	respect	to	multiple	agents	and	rather	are	just	concerning
ourselves	with	one	agent's	choices	(we	could	say	that	all	the	information	regarding	the	choices	of	other	agents	is	baked	into	the	probability
distribution	of	density).	Sparing	all	the	algebra,	we	can	then	continue	to	write
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And	we	get	an	expression	that	expresses	the	optimal	subway	car	for	one	such	individual	as	(given	that	I	haven't	made	any	computational
errors)

−x2 + ln(2ax ± c) = ln ±
c
x0

h0e
− ( h−9 )2− ( h−17 )2 + s0e

− ( s−33 )2 +
b1b2
t

Note	the	symmetry	of	choosing	an	optimal	x,	the	agent	doesn't	care	if	they	choose	x	or	−x	since	the	way	we	have	formulated	the	problem	is
with	a	lot	of	baked	in	symmetry.	Of	course	there	are	a	lot	of	unknowns	in	this	expression	but	the	general	implications	of	this	expression	are
logically	consistent	with	what	we	would	expect,	as	out	expected	density	grows	throught	the	h0e

− ( h−9 )2− ( h−17 )2 + s0e
− ( s−33 )2	term,	the

optimal	subway	car	becomes	closer	to	the	center	as	it	makes	less	sense	to	commit	that	much	effort	for	a	smaller	decrease	in	density	whereas
as	the	cost	of	walking	to	further	subway	cars	decreases	the	first	term	on	the	left	hand	side	of	the	expression	increases	and	thereby	makes	the
optimal	car	choice	further	away	from	the	center	since	it's	less	costly	for	the	agent	to	seek	out	cars	with	less	population	density.

Visualizing	the	Problem
So	far	we	have	an	equation	that	expresses	the	relationship	between	the	optimal	subway	car	choice	but	it's	a	bit	abstract	(at	least	to	me	it	is)
so	I'll	make	a	few	visualizations	to	go	with	it.
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import	numpy	as	np
import	matplotlib.pyplot	as	plt
from	ipywidgets	import	interact

init_t	=	5
init_h	=	13
init_s	=	33
init_c	=	1
init_a	=	1
init_b1	=	1
init_b2	=	1
init_x0	=	1
init_h0	=	1
init_s0	=	1

def	util_plot(t,	c,	h,	s,	a,	b1,	b2,	x0,	h0,	s0):		
				xs	=	np.linspace(-5,	5,	11)
				
				mu	=	(x0*np.exp(-np.power(xs,2))+	h0*np.exp(-np.power(h-9,2)-np.power(h-17,2))	+	
										s0*np.exp(-np.power(s-33,2)))
				
				coeff	=	t/(b1*b2)
				



<function	__main__.util_plot(t,	c,	h,	s,	a,	b1,	b2,	x0,	h0,	s0)>

Future	Work
So	far,	I've	only	dealt	with	one	agent	whose	decisions	don't	have	an	impact	on	the	"market".	I	could	also	expand	this	scenario	to	include	a
finite	set	of	agents	who	have	similar	(or	dissimilar	by	changing	the	cost	of	walking	to	futher	subway	cars	if	I	want	to	consider	a	very	simple
heterogenous	agent	model)	utility	preferences	and	see	what	the	optimal	allocation	of	subway	car	density	then	looks	like.	This	may	be
something	I	will	edit	and	repost.

Reflections
At	work,	I	keep	whatever	blog	post	idea	that	I'm	working	on	at	the	time	on	my	whiteboard	and	people	notice	it	from	time	to	time	and	talk	to	me
about	it.	I've	gotten	a	lot	of	really	interesting	feedback	and	insights	about	this	specific	problem.	The	main	gist	of	it	is	that	the	distributions	of
density	in	a	station	may	not	be	a	very	simple	normal	distribution	but	rather	have	multiple	modes	around	where	the	staircases	are	placed	in	a
given	station.	Other	suggestions	included	to	think	about	other	motivations	for	people	entering	the	specific	subway	car	that	they	enter	in	such
as	planning	for	their	future	exit	or	people	tending	to	actually	have	a	preference	for	dense	subway	cars	at	nighttimes	because	they	want	to	feel
safer.

So	far	I	can	think	of	a	couple	of	ways	to	bake	these	assumptions	into	the	model	(such	as	making	the	utility	function	itself	also	conditional	on
time	of	day	-	perhaps	with	some	transformation	such	that	by	changing	the	time	of	day	we	can	also	change	the	shape	and	modality	of	the
utility	function	-	or	making	some	unique	way	to	classify	the	number	of	station	on	the	line	of	stations	in	such	a	way	that	we	can	codifiy	the
conditional	expectation	of	ρ	properly).

For	now,	I	left	the	question	as	is	right	now	without	addressing	these	issues	just	because	I	wanted	to	post	at	least	something	instead	of	taking
an	exorbitant	amount	of	time	on	trying	to	work	around	every	potential	nuance.

Apendix
A.	Truncated	Normal	Distribution

Consider	that	instead	of	assuming	that	population	density	in	subways	cars	was	normally	distributed	conditional	on	x, s, h	they	were	truncated
normal.	That	is,	we	do	not	allow	for	negative	density	or	for	a	car	to	carry	more	people	than	is	possible;	the	pdf	function	is	0	at	all	values	less
than	equal	to	0	or	greater	than	equal	to	200.	All	this	would	change	is	the	conditional	expectation	expression	in	maximization	problem	but	it
involves	a	bit	more	algebra	for	the	first	order	conditions.	I	won't	write	out	everything	explicitly	but	with	a	truncated	normal	distribution	we

would	assume	some	mean	μ = x0e
− x2 + h0e

− ( h−9 )2− ( h−17 )2 + s0e
− ( s−33 )2	and	standard	distribution	σ	and	lower	and	upper	bounds	α =

0− μ

σ

and	β =
200− μ

σ
	respectively.	It	would	then	follow	that	the	mean	of	this	distribution	is

μ +
φ(α) − φ(β)

Z
σ

where	φ(x) =
1

√2π
exp −

1

2
x2 	and	Z = Φ(β) − Φ(α)	(Φ	is	the	standard	normal	CDF).

				ys	=	-c*np.abs(xs)	-	a*np.log(coeff*mu+1)
				
				plt.figure(figsize=(15,	5))
				plt.plot(xs,	ys)
				plt.xlabel('#	Subway	Car')
				plt.ylabel('Utility')
				plt.title('Agent	Utility')
				plt.grid(True)
				plt.show()

				
interact(util_plot,	t=(0,24,0.5),	c=(0,1,0.001),	h=(0,24,0.5),	s=(0,66,1),	a=(0,2,0.5),	
																					b1=(0,2,0.5),	b2=(0,2,0.5),	x0=(0,2,0.5),	h0=(0,2,0.5),	s0=(0,2,0.5))
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